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Abstract
We have used the ab initio full potential linear augmented plane wave (FPLAPW) method
within the local density functional theory to calculate the dielectric function and reflectivity of
BexZn1−x Se alloys for different compositions x = 0.0, 0.25, 0.50, 0.75 and 1.0. The calculated
dielectric function and reflectivities show reasonably good agreement with the experimental
data. The valence band maximum is dominated by the Se-3p states and the conduction band
minimum by Zn-4s states for x = 0.0, i.e. ZnSe, and by Be-p states for x = 1.0, i.e. BeSe.
Our calculations show that the direct band gap varies linearly with x .

1. Introduction

There is an increasing demand for good semiconductors for
various electrical and optical devices. Keeping this in mind the
group IV and III–V compounds have been extensively studied
theoretically as well as experimentally. Recently, there has
been a dedicated effort to understand the II–VI compounds.
In fact, Be compounds and their alloys remain unexplored
because of their highly toxic nature. Alloying of BeSe with
ZnSe offers an opportunity to create a new family of wide band
gap semiconductors with band gaps varying from 2.7 to 5.2 eV.
The performance and lifetime of devices depend on the doping
material.

Doping of Be in ZnSe (i.e. BexZn1−x Se ternary alloys)
has been suggested by Waag et al [1]. It improves the
hardness [2, 3] of the materials which is related to a longer
lifetime for devices. At the same time, smaller beryllium
concentrations are required to obtain large band gaps and have
a lattice matched with GaAs [4]. The large band gap of BeSe
(5.15 eV) suggests the possibility of using these materials
for ultraviolet (UV) optoelectronic applications. Molecular
beam epitaxy (MBE) [5] has made possible the preparation of
semiconductor-grade films of Bex Zn1−xSe alloys. Bosang et al
[6] have grown Bex Zn1−xSe alloys by the MBE technique and
studied photoluminescence (PL) as a function of temperature
and pressure. Mintairov et al [7] have grown Bex Zn1−xSe
alloys by MBE on GaAs (001) substrate of thickness between

0.3–1 mm and have studied IR and Raman spectra. Chauvet
et al [8] have grown BexZn1−x Se on GaAs(100) substrate
by MBE and studied low temperature photoluminescence and
reflectivity to locate the direct to indirect band gap cross-over.
Wilmers et al [9] have grown BexZn1−x Se on GaAs substrate
by using MBE and have measured the dielectric function for
the full composition range (i.e. x = 0.0–1.0) by ellipsometric
spectroscopy at room temperature.

Theoretical calculation of the optical and electronic
properties of BeX (X = Te, Se and S) compounds were
performed by Stukel [10]. The calculated dielectric functions
were not compared with the experimental data because no
data were available at that time. A few non-relativistic local
density approximation (LDA) calculations of the structural,
electronic and optical properties have been performed [11, 12]
for beryllium monochalcogenides. Baaziz et al [13] have
calculated the composition dependent structural and electronic
properties of Bex Zn1−xSe alloys. Fleszar and Hanke [14] have
calculated electronic excitations in BeX using the many-body
Green’s functions technique (GW) and have given a detailed
discussion of LDA versus GW. The vibrational properties
of BexZn1−x Se alloys have been studied by Postnikov et al
[15] using the SIESTA code [16] with norm-conserving
pseudopotentials and localized basis functions. Recently,
Berghout et al [17] studied Zn1−xBex Se using a plane-wave
pseudopotential scheme [18]. Their work shows that the lattice
constants follow Vegard’s law.
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Table 1. Lattice constants (in Å) for Bex Zn1−x Se alloys.

System
Present
calculationa WIEN2Kb WIEN2Kc Previous study Expt.

ZnSe 5.667 5.7598 5.6998 5.633d, 5.638e, 5.743f, 5.667g

5.635h, 5.645i, 5.543j,
5.568k, 5.571l, 5.5876m,
5.59n

Be0.25Zn0.75Se 5.5363 5.6371 5.5872 5.632f

Be0.50Zn0.50Se 5.4055 5.4805 5.4671 5.505f

Be0.75Zn0.25Se 5.2747 5.3346 5.3239 5.359f

BeSe 5.144 5.2282 5.1913 5.144o, 5.037p, 5.183t, 5.144q

5.037r

a Lattice constants calculated using Vegard’s law; b Unrelaxed atomic positions;
c Relaxed atomic positions; d Reference [28], LMTO;
e Reference [29], pseudopotential within LDA; f Reference [13], WIEN2K;
g Reference [30]; h Reference [31]; i Reference [32], pseudopotential planewave method;
j Reference [32], pseudopotential planewave method with NLCCs;
k Reference [15], WIEN2K(LDA); l Reference [15], WIEN2K(GGA);
m Reference [15], SIESTA; n Reference [17], pseudopotential scheme;
o Reference [12], WIEN97;
p Reference [11], pseudopotential within LDA; q Reference [14]; r Reference [33].

To the best of our knowledge no detailed calculations of
the optical properties have been performed for the Bex Zn1−xSe
alloys. Hence we thought it worthwhile to perform such
calculations, especially since experimental data are available.

In this paper we report such calculations using the state
of the art full potential linear augmented plane wave method
(FPLAPW). This paper is organized as follows. In section 2,
we give details of our calculations. The projected density of
states and frequency dependent dielectric properties (relaxed
and unrelaxed) are presented and discussed in section 3.
Section 4 summarizes our conclusions.

2. Method of calculation

We have calculated the optical properties of cubic Bex Zn1−xSe
alloys using the FPLAPW method [19] in a scalar relativistic
version as implemented in the WIEN2K package [20]. For the
exchange correlations, we have used the generalized gradient
approximation (GGA) [21]. In the FPLAPW method, a basis
set is obtained by dividing the unit cell into non-overlapping
atomic spheres (centered on the atomic sites) and an interstitial
region. Inside the atomic sphere, a linear combination of
radial function times spherical harmonic is used, and in
the interstitial region a plane wave expansion is augmented
by an atomic like function in every atomic sphere. This
method yields accurate energy eigenvalues and wavefunctions,
therefore appropriate for calculating the electronic and optical
properties of crystalline solids. We have chosen sphere radii of
1.8, 2.0, and 2.1 au for Be, Zn and Se, respectively. The values
of Kmax × RMT = 7.0 (where RMT is the atomic sphere radius
and Kmax is the interstitial plane wave cut-off), Gmax = 14
(used in charge density Fourier expansion) and lmax = 10 (for
wavefunction expansions inside the sphere) are kept constant
throughout the calculations.

A cubic unit cell is constructed with four group II
atoms (Zn/Be) and four group VI atoms (Se). We have
considered Bex Zn1−xSe alloys as having cubic symmetry in

our calculation for all the five systems to maintain consistency
and simplicity. We expect that for x = 0.5 the alloy is a
layered structure and should be non-cubic. We have taken
four layers and hence a cubic unit cell. For x = 0.25,
0.50, 0.75 we have replaced one, two and three Zn atoms,
respectively, by Be to get the desired concentration. The idea
of constructing an alloy by taking a large unit cell (cubic eight-
atom) and repeating it three dimensionally for the calculation
of the electronic structure of the semiconductor alloy has been
used by Agrawal et al [22]. Recently, Ahuja et al [23] have
used an eight-atom cubic supercell to calculate the optical
properties of Bex Zn1−xTe alloys, although no such calculations
have been performed for Bex Zn1−xSe alloys.

It is expected that spin–orbit coupling (SOC) plays an
important role in the optical properties of Bex Zn1−x Se alloys.
We have calculated the optical properties of ZnSe including
SOC. It has been observed that there is a negligible or minor
effect on the optical properties. On the scale that we show
our results, there is hardly any discernible difference. We have
chosen ZnSe to test the SOC effect because in other alloys Zn
is replaced by Be where SOC is smaller. Self-consistency was
obtained using 216 k-points in the irreducible Brillouin zone
(IBZ). The Brillouin zone integrations were carried out using
the tetrahedron method [24].

For the calculation of the optical properties, the crystal
structures are optimized by force and stress minimization in
which the atoms are allowed to move towards the equilibrium
positions. The Hellman–Feynman forces acting on each atom
are calculated and the structure is relaxed in all directions
until these forces become smaller than 0.1 mRyd/au. The
total energies converged to below 10−4 eV with respect to
the Brillouin zone integration. Thereafter the lattice constants
are optimized. These are presented in table 1. We have also
calculated total energies using 27, 64 and 125 k-points in the
IBZ and do not find any significant differences, suggesting that
our results are well converged with respect to the number of
k-points. A dense mesh of 512 k-points in the IBZ has been
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used for the calculation of optical properties. In a cubic unit
cell only one component of the dielectric function has to be
calculated, i.e. εxx , written as

ε(ω) = ε1(ω) + iε2(ω) (1)

describes the optical response of the system at all photon
energies E = h̄ω. The imaginary part of the dielectric function
ε2(ω) is given by [25]

ε2(ω) =
(

4πe2

m2ω2

) ∑
i j

∫
〈i |M| j〉2 fi (1 − f j )

× δ(EF − Ei − ω) d3k, (2)

where M is the dipole matrix element, i and j are the initial and
final states, respectively, fi is the Fermi distribution function
for the i th state. Ei is the energy of electron in the i th states.
The real part of the dielectric function ε1(ω) can be extracted
from the imaginary part of the dielectric function ε2(ω) by
using the Kramers–Kronig relation [26]

ε1(ω) = 1 + 2

π
P

∫ ∞

0

ω′ε2(ω
′) dω′

(ω′2 − ω2)
, (3)

where P implies the principal value of the integral. The
optical reflectivity spectrum R(ω) is calculated for normal
incidence on the crystal surface to the optical axis using the
relation [26, 27].

R(ω) =
∣∣∣∣
√

ε(ω) − 1√
ε(ω) + 1

∣∣∣∣
2

. (4)

We have used a Lorentz broadening of 0.1 eV. The
calculated optical properties for BexZn1−x Se alloys for
different concentrations have been shifted by a scissor operator
shift (SOS) [34]. The currently used SOS is entirely different
from the self-energy scissor operator discussed by Fiorentini
and Baldereschi [35] and the self-energy shift of Fleszar and
Hanke [14]. We simply shift the calculated spectrum rigidly
by a certain energy so as to match the onset of ε2(ω) with
the measured spectrum. The values of the SOSs for different
concentrations are presented in table 3.

The SOSs are used for all five concentrations x because
it is well known that LDA/GGA underestimates the energy
band gap. This is due to the fact that the one electron
energy spectrum obtained by the LDA/GGA does not express
the quasi-particle spectrum. To overcome this problem,
the electron self-energy (�) should be estimated precisely.
This can be done either by using a many-body perturbation
theory approach (MBPT) [36] or time-dependent density
functional theory (TDDFT) [37]. The MBPT combines
the GW approach [38] for single quasi-particle states with
the Bethe–Salpeter equation (BSE) [39] approach for the
excitonic contribution. A GW calculation requires quasi-
particle energies and amplitudes, taking for � the product of
the Green function G and the screened Coulomb interaction
W . An alternative approach for computing neutral excitations
is TDDFT, and this is expected to be more efficient than the
MBPT-based approach. Sottile [40] has made a comparative
study of optical properties using these techniques. These
calculations require very heavy computations. Hence, as
mentioned earlier, we have used a very simple and empirical
SOS [34] in this work to correct the energy gap.
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Figure 1. Calculated equilibrium lattice constants of Bex Zn1−x Se
alloys for different concentrations. Filled circles, open circles, open
boxes and filled triangles correspond to present calculations with
unrelaxed atomic positions, relaxed atomic positions, experimental
lattice constants [14, 30] using Vegard’s law and SIESTA
results [15], respectively.

3. Results and discussion

3.1. Structural parameters

We have used the WIEN2K code [20] to calculate the lattice
constants for five values of x in the Bex Zn1−xSe system,
although experimental values of the lattice constants are for
x = 0.0 and x = 1.0 and linearly interpolated (Vegard’s
law) values for x = 0.25, 0.50 and 0.75 are used in present
calculation. The obtained lattice constants compared with
other calculations are presented in table 1. In figure 1,
we present our calculated lattice constants as a function of
Be concentration along with Vegard’s law and SIESTA [15]
results. The calculated lattice constants scale linearly with
composition, thus obeying Vegard’s law. The results obtained
by FPLAPW (unrelaxed), FPLAPW (relaxed), Vegard’s law
and SIESTA [15] are fitted by the linear equations (5), (6), (7),
and (8), respectively.

a (Å) = 5.7598 − 0.5316x (5)

a (Å) = 5.6998 − 0.5085x (6)

a (Å) = 5.667 − 0.5230x (7)

a (Å) = 5.5879 − 0.5123x . (8)

Recently, a plane wave pseudopotential calculation [17]
also suggested that the lattice constants obey Vegard’s law.
We note that there is good agreement between the different
methods with a maximum difference of 1.7% for x = 0.25.
Our calculated lattice constants for a relaxed structure show
a deviation of 0.56% to 1.38% from Vegard’s law. Our
calculations suggest that we are justified in using the lattice
constants obtained from Vegard’s law to calculate the optical
properties of the Bex Zn1−xSe alloys.
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Table 2. Calculated band gaps for Bex Zn1−x Se alloys along �–� and �–X symmetry point (all in eV).

Present calculation Previous study Experimental

System (�–�) (�–X) (�–�) (�–�) (�–X)

ZnSe 1.14 2.98 1.04a, 2.41b, 2.58d

2.69b, 1.11c

Be0.25Zn0.75Se 1.90 2.83 1.64c 3.5e

Be0.50Zn0.50Se 2.54 2.72 2.27c 3.95e

Be0.75Zn0.25Se 3.35 2.65 2.75c 4.4f

BeSe 4.30 2.63 4.37g, 5.47h, 5.55j, 4.0k

4.72i, 4.19c

a Reference [28]; b Reference [41]; c Reference [13]; d Reference [42];
e Reference [8]; f Reference [8] for Be0.67Zn0.33Se; g Reference [12];
h Reference [14]; i Reference [11]; j Reference [9]; k Reference [49].

3.2. Projected density of states

The projected density of states (PDOS) for different
concentrations, i.e. x = 0.0, 0.50 and 1.0, of Bex Zn1−xSe
alloys are presented in figure 2 with the zero of energy
corresponding to the Fermi level or top of the valence band.
There is an overall qualitative agreement with earlier first-
principles calculations [28, 29]. The PDOS for x = 0.0,
i.e. ZnSe, presented in figure 2(a) can be divided into four
regions. In the first region A (−13.5 to −4.0 eV) three
sharp structures at −12.5, −6.4 and −4.7 eV are visible. A
sharp peak structure at −12.5 eV arises due to Se-s states, its
nature remains unchanged with increasing Be concentration
(x) except that the small contribution from Zn-s, -p, -d is
replaced by Be-s, and -p states. The second peak at −6.4 eV
originates mainly from the strong hybridization of Zn-d and
Se-p. The width of the peak (−6.4 eV) decreases with
increasing Be concentration. The third structure at −4.7 eV is
due to strong hybridization between Se-p and Zn-s, -d states.
For x = 0.25 and x = 0.50 the peak broadens, and with
further increase in x it becomes sharp and finally disappears.
The second region B (−4.0 to 0.0 eV, i.e. the top of the valence
band) is mainly due to Se-p states. The third region C (from
bottom of the conduction band to 4.5 eV) is composed of Zn-s
and Se-p states. The fourth region D (from 4.5 eV onwards) is
dominated by Se-p and Zn-p states.

Our calculations show that replacing Zn by Be causes
the bandwidth of the valence band to increase slightly. The
character at the top of the valence band remains unchanged.
New structures are visible in the C and D regions which are
attributed to Be-s, -p states extending from minima of the
conduction band to 6.5 eV. This clearly indicates that Be-s, -p
states should not be treated as localized states. The conduction
band minima changes from Zn-s to Be-p states as beryllium
is added. The calculated band gap along the �–� symmetry
direction increases linearly, while along �–X the symmetry
direction decreases with Be concentration presented in table 2.
The direct to indirect band gap cross-over is equal to x ≈ 0.53
in contrast to the measured value [8] of x = 0.46. In table 2,
we compare our results with the results of other calculations
and experiments.
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Figure 2. Calculated PDOS for Bex Zn1−x Se alloys for three different
concentrations, i.e. x = 0.0, 0.50 and 1.00.

3.3. Imaginary part of the dielectric function

The calculation of ε2(ω) requires energy eigenvalues and
electron wavefunctions. These are natural outputs of the band
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Table 3. Approximate peak positions ε2(ω) for Bex Zn1−x Se alloys
(all in eV).

System Scissor correction A B C

ZnSe 0.600 2.6 4.5 6.0
Be0.25Zn0.75Se 0.510 3.0 4.5 6.2
Be0.50Zn0.50Se 0.310 4.0 5.0 6.2
Be0.75Zn0.25Se 0.150 4.2 5.4 6.2
BeSe 0.175 6.0 6.2

structure calculations. In this section we present calculations
for ε2(ω) and compare them with the available experimental
data [9]. We will try to analyze the structures in ε2(ω) in terms
of the projected density of states. In figure 3, the calculated
ε2(ω) are presented for Bex Zn1−x Se alloys with and without
relaxing the atomic positions for different concentrations,
i.e. x = 0.0, 0.25, 0.50, 0.75 and 1.0. These calculated ε2(ω)

are compared with the measured [9] dielectric functions for
concentrations of x = 0.0, 0.30, 0.50, 0.70 and 1.0. All the
compounds show three structures labeled A, B and C. The
location of these structures in the Bex Zn1−x Se alloys is given
in table 3.

Walter et al [43] and Kim et al [44] have calculated ε2(ω)

for x = 0.0, i.e. ZnSe. Our calculations are in agreement with
these earlier calculations. The calculated ε2(ω) for x = 0.0
presented in figure 3(a) has a small peak at 2.6 eV. This
could be due to transitions from occupied Se-p states to the
unoccupied Zn-s state of the conduction band. The sharp rise
in ε2(ω) at 4.0 eV reaches a maximum at B. This maximum
could arise from transitions from just below EF Se-p and Se-d
states to just above it, i.e. Zn-s and Se-p states. The structure
C is dominated by the transitions from Se-p and Zn-s states
(4.0 to 6.7 eV) below EF to the Se-p and Zn-p states (3.0 eV)
above EF. We note that with increasing Be concentration x
the conduction band minimum moves towards higher energies
(see figure 2). This causes structures A and B to move towards
higher energies and finally merge with the structure C for BeSe
(see table 3). The shifting of the peaks with increasing x is
consistent with PL data [8]. The structure C arises due to
transitions from deep valence states like Se-p and Zn-s,d/Be-
s, -p states to conduction band Se-p and Zn-p/Be-s, -p state.
The overall main features of ε2(ω) remain unchanged except
that some structures broaden a little.

The measurements have been done for the disordered
samples while our calculations are for an ordered crystal.
The electronic properties of ordered structures of crystal with
impurities sensitively reflect the details of the microscopic
atomic arrangements including small changes in atomic
positions called relaxation. On the other hand, the obvious
difficulty with structural theories of alloys arises from the fact
that even in the simplest case of a binary system with N sites,
there are 2N possible atomic configurations whose total energy
needs to be structurally relaxed then averaged. One then needs
in practice to either select a representative configuration or a
large number of configurations/large cell sizes for which first-
principles self-consistent calculations are still impractical. In
the present case, we have opted for the first option, i.e. we took
three representative configurations for x = 0.25, 0.50 and 0.75.
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Figure 3. Calculated (experimental [9]) ε2(ω), for Bex Zn1−x Se
alloys for five different concentrations, i.e. x = 0.0 (0.0), 0.25 (0.30),
0.50 (0.50), 0.75 (0.70) and 1.0 (1.0). ( ) are the corresponding
experimental values of x .
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Figure 4. Calculated ε2(ω) for ZnSe with SOS (without SOS) and
with the lattice constant increased by 2% are presented by the solid
line (filled circles) and dashed line, respectively.

The total energies are calculated for all the three systems with
and without relaxation of the atomic positions. It is true that
there are minor changes in the atomic position of the order of
0.01 au for x = 0.50, or even less.

The second option, which is beyond the scope of the
present calculation, is to choose random alloys. Describing
random alloys by a periodic structure will clearly introduce
spurious corrections beyond a certain distance. However, many
physical properties of solids are characterized by a microscopic
length scales that can be ordered by size to form a hierarchy.
In general, interactions between distant neighbors contribute
less to the total energy than do interaction between close
neighbors. Hence, construction of a special quasi-random
structure (SQS) [45] by the principle of close reproduction of
the perfectly random network for the first few shells around a
given site defers periodicity error to more distant neighbors.
This approach is similar to guiding the selection of special
points for Brillouin zone integration.

It is known that disorderliness leads to an increase in
the possibility of indirect optical transitions and violates
translational symmetry. We have taken a very simplified
view that disorder can be modeled by introducing broadening.
We find reasonable agreement with the experimental data for
alloys, in contrast to ZnSe. In the measured spectra of ZnSe the
second structure at B could be due to excitonic effects [46, 47].
As a matter of fact, excitonic effects are not included in the
present calculation. A similar problem with Si optical spectra
has been discussed and solved satisfactorily by Sottile [40]
taking into account excitonic effects.

ε2(ω) for ZnSe is presented in figure 4, with and
without SOS, in order to see the effect of SOS on the
calculated spectrum. In order to determine the variation of
optical properties with lattice constant, we have performed
calculations by increasing the lattice constant by 2% (this is
around the 1.7% error mentioned above). These are presented
in figure 4. There is a minor shift of the spectrum edge while
the main structure remains the same. Hence a 1.7% change
in the lattice constant is not expected to change the optical
properties significantly.
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Figure 5. Calculated (experimental [9]) ε1(ω) for Bex Zn1−x Se alloys
for five different concentrations, i.e. x = 0.0 (0.0), 0.25, 0.50, 0.75
and 1.0 (1.0). ( ) are the corresponding experimental values of x .

3.4. Real part of the dielectric function

The real part of dielectric function ε1(ω) for Bex Zn1−xSe
alloys for x = 0.0, 0.25, 0.50, 0.75 and 1.0 is presented
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Figure 6. Calculated (experimental [8, 9]) R(ω) for Bex Zn1−x Se
alloys for five different concentration, i.e. x = 0.0 (0.0), 0.25 (0.31),
0.50 (0.45), 0.75 and 1.0. ( ) are the corresponding experimental
values of x .

in figure 5 along with the available experimental data [9] for
x = 0.0 and 1.0. The calculated ε1(ω) for x = 0.0 and 1.0,
i.e. ZnSe and BeSe, shows overall good agreement with the
measured spectra [9].

3.5. Reflectivity

In order to make a more detailed comparison between theory
and experiment, we have calculated the frequency dependent
reflectivity R(ω) for the alloys. The results of our calculations
are presented in figure 6. We can identify the three structures
A, B and C in figures 5 and 6 as in figure 3 for ε2(ω).
These structures seem to show similar trends as discussed
for ε1(ω) and ε2(ω). For x = 0.0, the calculated R(ω) is
compared with the measured experimental data [48]. Chauvet
et al [8] have measured R(ω) in the small energy window
0.3 eV for Be0.31Zn0.69Se and Be0.45Zn0.55Se, and values are
located above and below structure A in figures 6(b) and (c),
respectively. The measured PL structures shift towards higher
energies [8] on increasing x which is consistent with our
calculations.

4. Conclusions

In this paper, we have presented calculations of the optical
properties of the Bex Zn1−xSe alloys using the WIEN2K
code. We find reasonably good agreement with the available
experimental data. We are able to get trends in ε2(ω) that are
in agreement with the experimental data. We would like to
stress that our calculations are for the ordered alloys while the
experimental data are for disordered alloys. Our calculations
are performed with GGA and we have not included any
electron self-energy corrections. In spite of the simplifications
we have used in our approach, the agreement with the
experimental data is very encouraging.
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